Early Learning Goal	Concrete	Pictorial	Abstract	$Y R$
Count reliably with numbers from 1 to 20	Use a variety of objects to count different groups of 1 to 20	Use pictures to count groups	Count groups using numbers and counting aloud. Subsidising numbers on dice for board games	
Add two single-digit numbers	Use cubes to add 2 numbers together as a group. Using the part-whole model.	Use pictures to add 2 single digit numbers	Use abstract knowledge to add 2 single digit numbers. $3+2=5$	D (1) 5
Subtract two single-digit numbers	Use physical objects, counters, cubes to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $15-3=12$	$7-4=3$ $16-9=7$	

Early Learning Goal	Concrete	Pictorial	Abstract	$Y R$
Counting forwards and backwards	Move objects towards and away from the group.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?	
Counting in steps of 2	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$	
Doubling numbers to 10	Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling. $+$ $=$ \square $+$ \square $=$	Draw pictures to show how to double numbers. Double 4 is 8	Partition a number and then double each part before recombining it back together.	\square
Halving even numbers less than 20	Sharing numbers into 2 groups I have 10 cubes, can you share them equally in 2 groups?	Children draw a picture to show the sharing	12 shared between 2 is 6	

Objective and Strategy	Concrete	Pictorial	Abstract	19								
Adding multiples of 10	$50=30+10$ Use dienes or bead strings	Use representations for base ten 3 tens +5 tens $=$ \qquad tens $30+50=$ \qquad	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$									
Use known number facts Part－whole	Children explore different ways of making numbers within 20.	$\begin{gathered} 20 \\ \square+\square=20 \\ \square+\square=20 \end{gathered} \quad 20-\square=\square=\square$	$\begin{aligned} & \square+1=16 \\ & 1+\square=16 \\ & 16-1=\square \\ & 16-\square=1 \end{aligned}$									
Using known facts		$\begin{aligned} \because+\therefore & =\dot{\theta} \\ \\|\\|+\\|\\| & =\\| \\|\\| \\| \\ \square \square+\text { 日昌 } & =\text { 昌昌吅 } \end{aligned}$ Children draw representations of $\mathrm{H}, \mathrm{T}, \mathrm{O}$	$3+4=7$ leads to $30+40=70$ leads to $300=400=700$									
Bar model		$7+3=10$	23 25 $?$ $23+25=48$									

Objective and Strategy	Concrete	Pictorial	Abstract	
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten' Children explore the patterns $\begin{aligned} & 17+5=22 \\ & 27+5=22 \end{aligned}$	Use part-whole model and number lines $17+5=22$	$17+5=22$17 5 22 Make explicit the related facts $\begin{aligned} & 17+5=22 \\ & 5+17=22 \\ & 22-5=17 \\ & 22-17=5 \end{aligned}$	
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change, 100 square to investigate number sense.		$\begin{aligned} & 27+10=27 \\ & 27+20=37 \\ & 27+\square=57 \end{aligned}$	
Add 2 two-digit numbers	$\boldsymbol{M}_{0_{0}}^{0_{0}} \quad \boldsymbol{/} \boldsymbol{M}_{0_{0_{0}}^{0_{0}}}^{0_{0_{0}}}$ Model using dienes, place value counters and numicon	Use number line and bridge ten using part vihole if necessary.	$25+47$ Only partition 1 number $\begin{aligned} & (47=40+7) \\ & 25+40=65 \\ & 65+7=72 \end{aligned}$	

Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit. Use dienes, place value counters, ten frames and numicon	$+$ Regroup and draw representation.	Combine 2 numbers that make or bridge 10 , then add third number. $\begin{aligned} & 4+7+6= \\ & 4+6=10 \\ & 10+7=17 \end{aligned}$

Objective and Strategy	Concrete	Pictorial	Abstract	13
Column Addition-no regrouping (friendly numbers)	Model using Dienes \& numicon. Add the ones first, then the tens.	Children move to drawing the counters using a tens and one frame.	Add the ones first, then the tens, then the hundreds.	
		tens ones	$\begin{gathered} H \\ \\ 200 \end{gathered}+20+3$	
	Moving to place value counters. $\begin{array}{lll}\mathrm{H} & \mathrm{T} & \mathrm{O}\end{array}$		$300+30+7=337$	
Column Addition with regrouping.	Exchange ten ones for a ten, using PV counters.	Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line.	Start by partitioning the numbers. $\begin{array}{cc} T & 0 \\ 20 & +5 \\ 40 & 8 \\ \hline 60+13=73 \end{array}$ Then use the formal column to show the exchange. $\begin{array}{r} T 0 \\ 25 \\ +\quad 48 \\ \hline 73 \\ \hline 1 \end{array}$	

Objective and Strategy	Concrete	Pictorial	Abstract	
Year 4 Add numbers with up to 4 digits	Children continue to use PV counters to add and understand the concept of exchanging between the PV columns.	Draw representations using PV grid.	Continue from previous work to include carrying hundreds. Relate to money and measures. $\begin{array}{r} \text { Th Ho } \\ 3517 \\ +\quad 396 \\ \hline 3913 \end{array}$	
Year 5 Add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	Continue to use PV Counters and introduce decimal place value counters to model exchange.	$2.37+81.79$ tens Ones tents hundredtes 00 000 0000 00000 0 0 000 000 000 0000 000 6	$\begin{array}{r} \mathrm{T} \\ \hline \end{array}$	
Year 6 Add several numbers of increasing complexity. Important to be in the context of money and measure using 3dp	See above	See above	Insert place holders! $\begin{array}{r} 23 \cdot 361 \\ 9 \cdot 080 \\ 59 \cdot 770 \\ +\quad 1 \cdot 300 \\ \hline 93 \cdot 511 \\ 21.21 \end{array}$	

Objective and Strategy	Concrete	Pictorial	Abstract	M
Taking away ones.	Use physical objects, counters, cubes to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $15-3=12$	$7-4=3$ $16-9=7$	
Counting back	Move objects away from the group.	Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?	
Find the difference	Compare objects and amounts. Use two-sided counters	Count on using a number line to find the difference. Difference between 5 and 11\|	Hannah has12 sweets and her sister has 5 . How many more does Hannah have than her sister?	

Objective and Strategy	Concrete		Pictorial ${ }^{\text {abstract }}$		12
Regroup a ten into ten ones	Use a PV chart to sh into ten ones, use th	how to change a ten erm 'take and make'	$\begin{aligned} & \sum_{3}^{3} \sum \underset{3}{3} \quad 3= \\ & 20-4= \end{aligned}$	Use what we know to help calculate, e.g. number bonds, 20 $=10+10$, number bond for 10 and 4 is? $20-4=16$	
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.		Draw a representation so can cross off. $43-21=22$	$43-21=22$	
Make ten strategy Progression should be crossing one ten, crossing more than one ten, cross- ing the hundreds.	Use a number line to model counting to next ten and the rest.24-16		Use a number line to count on to next ten and then the rest.	$\begin{aligned} & 93-76=17 \\ & 28+\square=34 \end{aligned}$	

Objective and Strategy	Concrete	Pictorial	Abstract	Y3
Column subtraction without regrouping (friendly numbers)	Use Diennes or Numiocon to model $\begin{gathered} \text { B } 47-32 \\ - \end{gathered}$	Draw representations to support understanding.	Intermediate step may be needed to lead to clear subtraction understanding. This: $\begin{gathered} 47-24=23 \\ -20+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$	
Column subtraction with regrouping	Begin with Diennes or Numicon. Move to PV counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange. 45-29	Children may draw Diennes or PV counters and cross off. $\begin{array}{r} 45 \\ -29 \\ \hline 16 \end{array}$ $\begin{aligned} & 7 \begin{array}{l} \text { ga } \\ a 0 \\ 00 \end{array}=16 \\ & 10+6=16 \end{aligned}$	Start with partitioning To formal method $\begin{array}{ccc} 728-582=146 \\ 4 & y^{\prime} & 4 \\ 7 & 2 & 8 \\ 5 & 8 & 2 \\ \hline 1 & \frac{4}{4} & 6 \end{array}$	

Objective and Strategy	Concrete	Pictorial	Abstract	$\cdots 4,-6$
Subtracting tens and ones Year 4-subtract with up-to 4 digits. Introduce decimal subtraction through context of money	Model exchange using Dienes or PV counters.$234-179$$\odot$ \odot 0 $\odot \bigcirc$ $0 \odot \bigcirc$ 0000 \odot $\bigcirc \bigcirc$ 000 $000 \odot$ 000	Children to draw PV counters and show their exchange (see Year 3)	Use the phrase 'take and make' for exchange.	
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal.		Children to draw PV counters and show their exchange (see Year 3)	$\begin{array}{r} \text { Th Th H T } \quad 0 \\ { }^{2} 8^{\prime \circ} x^{\prime} 0 \not \$^{\prime} 6 \\ -\quad 21288 \\ \hline 28,928 \end{array}$ Remember to use PV holders! $\begin{array}{r} \text { Th H }{ }^{\top}{ }^{\circ} \cdot{ }^{1 / 1 / 0 \text { ths }} \\ { }^{6} 7^{10} X^{1} 69^{8} \cdot{ }^{\prime} 0 \\ -\quad 372 \cdot 5 \\ \hline \ln 796 \cdot 5 \end{array}$	
Year 6 - Subtract with increasingly large and more complex numbers and decimal values.			$\begin{array}{r} 7415 \cdot 34119 \\ -36 \cdot 080 \\ \hline 69 \cdot 339 \end{array}$	

Objective and Strategy

Counting in multiples	Count the groups as children are skip counting, children may use their fingers as they are skip counting.	Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$	
Making equal groups and counting the total	Use manipulatives to create equal groups or 'lots of'.	Draw and make representations. Draw to show $2 \times 3=6$	$2 \times 4=8$	
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show understanding.	$\begin{gathered} 3 \times 2=6 \\ 2 \times 5=10 \end{gathered}$	

Objective and Strategy	Concrete	Pictorial	Abstract	19
Doubling	Model doubling using Dienes and PV counters.	Draw pictures and representations to show how to double numbers.	Partition number, then double each part before recombining. Or near double mental strategy.	
Counting in multiples of $2,3,4,5,10$ from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5=35$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples. $\underbrace{\text { sing sing son sing in }}_{\text {so in }}$	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \end{aligned}$ $0,5,10,15,20,25,30$ $4 \times 3=$ \square	

Objective and Strategy	Concrete	Pictorial	Abstract	
Division as sharing, groups of, lots of		Children use pictures or shapes to share quantities.	12 shared between 3 is 4	
	I have 10 cubes, can you share them equally in 2 groups?	Sharing: 12 shared between 3 is 4 8 shared between 2 is 4		

Objective and Strategy	Concrete	Pictorial	Abstract	13
Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6=4$ $96 \div 3=32$	Continue to use bar modelling to aid solving division problems. $\begin{aligned} & 20 \div 5=? \\ & 5 \times ?=20 \end{aligned}$	How many groups of 6 in 24? $24 \div 6=4$	
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rl} \text { E.g. } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating eight linking number sentences.	

Objective and Strategy	Concrete	Pictorial	Abstract	$14-6$
Divide at least 3 digit numbers by 1 digit. Short Division	$96 \div 3$ Use PV counters using the formal method alongside. $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	Continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Encourage children to create a multiples line of the divisor. e.g. $872 \div 4$ 4 Move to division with a remainder. Introduce concept that the remainder can be expressed as a fraction. $432 \div 5=86 \frac{2}{5} \quad$, with the remainder being the numerator and the denominator being the divisor. Finally move into decimal places to divide the total accurately.	

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| | | | | | |

Make sure the terminology - divisor, multiple, remainder, carry.

Step 1

Create a multiples line either using repeated addition or partitioning.
Repeated addition

24
+24
48
+24
72
+24
96
+24
120

See link for video:

https://thirdspacelearning.com/blog/best-long-division-method-ks2/

Step 2

Adopt the 'l, we, you' process to go through a worked example.

As working through make sure they understand the steps and encourage them to write the symbols for each step to secure the process.

```
\div
Success criteria
1. List multiples of the divisor (are you going to do
repeated addition or partition and add?)
2. Divide
3. Multiply
4. Subtract
5. Bring it down...
6. ...and bring it on back!
```


Step 3

Lots of practice and modelling.

