EARLY LEARNING GOAL
Solve problems
including doubling and
halving Using the language of half empty/full, e.g. when playing in sand

BENTLEY CE PRMARY SCHOOL - FRACTON PROCRESSON

| EARLY LEARNNG GOAL | | CONCRETE | PICTORIAL | Count out loud in
 halves from zero
 to ten |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Recognise patterns | | | | |
| Use a variety of objects to share a group. Knowing when the group | | | | |
| can be shared equally. | | | | |

BENTLEY CE PRMARY SCHOOL - FRACTON PROCRESSON

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Recognise, find and name a half as one of two equal parts of an object, shape or quantity	"Half is one group out of two equal groups." Choose a number of counters to share between two plates so there is the same on each half. When can you do this? When can you not do this? Finding half by \square \rightarrow \square Folding paper Numicon	Share dots between two circles so there is the same in each. Accurately find half of a drawn rectangle \square How many ways can you cut this square in half?	Half of $4=$ Half of $8=$ Half of $10=$ Half of 4 is not 3 Half of 7 is not 4 Know that it is easier to half an even number. Link to doubling and halving Link to $2 x$ tables knowledge Why is this not a half?	

BENTLEY CE PRIMARY SCHOOL - FRACTON PROOBESSON

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
	Problem solve E.g. John had some tomatoes, he ate half of them. He had 4 left. How many did he start with? "How many tomatoes do I need to put on the plate so they are equal?"	$\sigma \sigma$ $\sigma \sigma$	Double 4 to make the whole or $2 \times 4=$	
Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	"A quarter is one group out of four equal groups." Finding a quarter by Folding paper Numicon Cuisenaire Rods (9) 8 grg Telling the time	Share 8 into 4 equal groups	A quarter of $20=$ A quarter of $12=$ A quarter of $16=$ Uses halving and halving again to find a quarter of a number.	

BENTLEY CE PRIMARY SCHOOL - FRACTON PROOBESSON

BENTLEY CE PRMMRY SCHOOL - FRACTON PROOBESSON
Recognise the equivalence

BENTLEY CE PRMARY SCHOOL - FRACTON PROCRESSON

OBJECTNE	CONCRETE	PICTORIAL	ABSTRACT	
Count up and down in tenths. Recognise that tenths arise from dividing an object into 10 equal parts and a number by 10		Bar model Number line	$\frac{1}{10} \text { of } 6=0.6$ because $6 \div 10=0.6$	
	Fraction walls			
Recognise, find and write fractions of a discrete set of objects (unit fractions and non-unit fractions with small denominators)			$\begin{aligned} & \frac{1}{5} \text { of } 15 \text { sweets }=3 \\ & \text { because } 15 \div 5=3 \end{aligned}$ and $\frac{2}{5} \text { of } 15 \text { sweets }=3$ because $15 \div 5=3$ and 2 lots of 3 equal 6	

BENLLEY CE PRMARY SCHOOL - FRACTON PROCRESSON

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Add and subtract fractions with the same denominator within one whole.	Fraction cubes Fraction wall	Using bar model $\frac{2}{4}+\frac{1}{4}=\frac{3}{4}$ Using a number line	$\begin{aligned} & \frac{2}{4}+\frac{1}{4}=\frac{3}{4} \\ & \frac{6}{8}-\frac{3}{8}=\frac{3}{8} \end{aligned}$ Solve problems using fractions, e.g. $\frac{3}{5}-\square=\frac{2}{5}$	

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Count up and down in hundredths, recognise that hundredths arise when dividing an object by 100 and dividing an number by 100 as well as a tenth by 10	Counting Sticks	Place value grids So $\frac{7}{100}=0.07$	$\frac{1}{100}$ of $70=0.7$ because $7 \div 100=0.7$	
Recognise and show, using diagrams, families of common equivalent fractions	Fractions cubes Fraction Strips \square	Fraction wall Bar models \square	Apply times tables facts to find equivalent fractions $\begin{aligned} & \frac{6}{8}=\frac{3}{4} \\ & \frac{2}{3}=\frac{4}{6} \end{aligned}$ 'Whatever you do to the top, you must do to the bottom.'	$\bar{\sum}$

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Recognise and write the decimal equivalents of $\frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$	Fraction cubes $\begin{array}{l\|l} \frac{1}{2} & 0.5 \end{array}$	Using a blank hundred square	Rapid recall of facts $\begin{aligned} & \frac{1}{2}=0.5 \\ & \frac{1}{4}=0.25 \\ & \frac{3}{4}=0.75 \end{aligned}$	
Recognise and write decimal equivalents of any number of tenths and hundredths	$\frac{1}{10}$ of a chocolate bar is 0.1 Fraction cubes	Place value grid	Rapid recall of facts $\begin{aligned} & \frac{1}{10}=0.1 \\ & \frac{3}{10}=0.3 \\ & \frac{5}{10}=\frac{1}{2}=0.5 \end{aligned}$	

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Add and subtract fractions with the same denominator	Fraction cubes Fraction walls	Bar model $\frac{1}{7}+\frac{5}{7}=$ $=\frac{6}{7}$ Introducing the concepts of mixed numbers and improper fractions $\frac{4}{7}+\frac{5}{7}=$ \square $=\frac{9}{7}=1 \frac{2}{7}$	Peter eats $\frac{3}{8}$ of his pizza, how much does he have left? Jane eats $\frac{1}{7}$ and Bob eats $\frac{5}{7}$ of the chocolate bar, how much have they eaten together?	
Solve problems to calculate fractions of amounts.		Bar model Share the whole equally between the parts. $\frac{3}{5}=£ 15$	$\begin{gathered} \frac{3}{5} \text { of } £ 25 \\ \frac{1}{5}=£ 5(25 \div 5) \\ \frac{3}{5}=£ 15(5 \times 3) \end{gathered}$	
Solve simple measure and money problems involving fractions and decimals to 2 decimal places		 Using place value charts to understand money	Using known facts $\begin{aligned} & 1 \mathrm{~m}=100 \mathrm{~cm} \\ & 1 / 2 \mathrm{~m}=50 \mathrm{~cm} \\ & 1 / 4 \mathrm{~m}=25 \mathrm{~cm} \\ & 10 \mathrm{~cm}=\frac{1}{10}=0.1 \mathrm{~m} \end{aligned}$	

BENTLEY CE PRMMRY SCHOL - FRACTON PROORESSON

BENLLEY CE PRMARY SCHOOL - FRACTON PROCRESSON

BENTLEY CE PRIMARY SCHOOL - FRACTON PROCRESSOON

BENLLE CE PRMARY SCHOOL - FRPCTTN PROCRESSON

Term	Meaning	Year Introduced
Denominator	The bottom number in a fraction. It shows how many equal parts that the whole has been divided into E.G. $\frac{1}{4}-4$ is the denominator and the whole has 4 equal parts	Year 1
Equivalent fraction	These are fractions that may look different, but have the same value E.G. $\frac{1}{4}$ and $\frac{2}{8}$ are equivalent	Year 2
Fraction	A part of a whole. A common fraction is made up of a numerator and a denominator A fantastic interactive fraction wall is perfect for iPads. https://www.visnos.com/demos/fraction-wall	Year R
Improper fraction	A fraction where the numerator is greater than the denominator. It has a value greater than 1 E.G. $\frac{5}{4}$	Year 5
Mixed number	A number that is made up of a whole number plus a fraction E.G. $1 \frac{1}{4}$	Year 5
Non-unit fraction	A fraction where the numerator is greater than 1	Year 2
Numerator	The top number of a fraction. It shows how many equal parts of the denominator are represented E.G. $\frac{3}{4}-3$ is the numerator	Year 1
Unit fraction	A fraction where the numerator is 1	The horizontal line between the numerator and denominator; it shows the numbers are to be interpreted together and represents a part/whole structure
Vinculum	Year 2	

COMMON MSCONCEPTONS WITHN FRACTIONS

Misconception 1: Fractions are seen as pieces rather than equal parts to the whole.

Incorrect

Leaners view this as thirds

Correct
Learners write the shaded part $\frac{2}{3}$ "There are three equal parts to the whole and two are."

Misconception 2: Fractional pieces have to be congruent (the same shape) to be the same fraction.

Incorrect

Learners do not view this as quarters

Correct

Learners understand that triangles and rectangles both represent a quarter

Misconception 3: The larger the denominator the bigger the portion

Incorrect

" $\frac{1}{3}$ is bigger than $\frac{1}{2}$ because 3 is bigger than 2"

Correct

" $\frac{1}{3}$ is smaller than $\frac{1}{2}$ because the whole is divided into three and that part will be smaller than a part whose whole is divided into two."

\square

Misconception 4: Identical fraction of different 'wholes' are not the same.

"Would you prefer to eat half a cupcake or half the chocolate cake?" Why? Are you still getting half of each?

There is a fantastic interactive fraction wall which is perfect for iPads. https://www.visnos.com/demos/fraction-wall

