

EARLY LEARNING GOAL	CONCRETE	PICTORIAL	ABSTRACT	
Recognise patterns	Use a variety of objects to share a group. Knowing when the group can be shared equally.		Count out loud in halves from zero to ten	
	Sharing 16 into 4 equal groups			EARLY
	Sharing 20 into 5 equal groups			YEARS
				EARLY YEARS FRACTIONS

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Recognise, find and name				
a half as one of two equal		whole half	Half of 4 =	
parts of an object, shape or quantity		8 8	Half of 8 =	
	"Half is one group out of two equal groups."		Half of 10 =	
	Choose a number of counters to	Share dots between two circles so there is the same in each.	Half of 4 is not 3	YEAR 1
	share between two plates so there is the same on each half.	•••••	Half of 7 is not 4	
		(\cdot) (\cdot)	Know that it is easier to half an even number.	FRACTIONS
	When can you do this? When can		Link to doubling and halving	
	you not do this?		Link to 2x tables knowledge	SNO
	Finding half by	Accurately find half of a drawn rectangle How many ways can you cut this	Why is this not a half?	
	Numicon	square in half?		
	Cuisenaire Rods			

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
	Problem solve E.g. John had some tomatoes, he ate half of them. He had 4 left. How many did he start with? "How many tomatoes do I need to put on the plate so they are equal?"	6000	Double 4 to make the whole or 2 x 4 =	YEAR 1
Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	1/4 ••••••••••••••••••••••••••••••••••••		A quarter of 20 = A quarter of 12 = A quarter of 16 = Uses halving and halving again to find a quarter of a number.	YEAR 1 FRACTIONS
	Folding paper Numicon Mumicon Telling the time	Share 8 into 4 equal groups		

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Compare an order fractions whose denominators are all multiples of the same number	Fraction cubes and fraction walls (see Year 4)	$\frac{\frac{5}{6}}{1} > \frac{\frac{2}{3}}{1}$ Fraction strips Bar models	$\frac{2}{5} = \frac{8}{20} \qquad 1 = \frac{5}{20}$	YEAR 5 FR
Add and subtract fractions with the same denominator and denominators that are multiples of the same number	Fractions walls and fraction cubes (see Year 4)	Bar models $\frac{5}{6} + \frac{2}{3} = \frac{5}{6} + \frac{4}{6} = \frac{10}{6} = 1\frac{4}{6} = 1\frac{2}{3}$	$\frac{\frac{2}{5} - \frac{1}{4}}{\frac{2}{5} - \frac{8}{20}} = \frac{\frac{8}{20}}{\frac{1}{4} - \frac{5}{20}}$ $\frac{\frac{8}{20} - \frac{5}{20} = \frac{3}{20}}{\frac{3}{50}}$ So, $\frac{2}{5} - \frac{1}{4} = \frac{3}{20}$	FRACTIONS

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams	Fraction cubes 2 lots of 3 1 1 1 1 1 1 1 1 1 1	Bar models 2 lots of 3 Electron	$\frac{2}{5} \times 2 = \frac{4}{5}$	YEAR 5 FR
Solve problems which require knowing the percentage and decimal equivalents of ½, ¼, 1/5, 2/5, 4/5 & with denominator of 10 or 25	Fraction cubes	Bar models	$\frac{1}{4} = 0.25 = 25\%$ $\frac{1}{2} = 0.5 = 50\%$ $\frac{22}{25} = 88\% = 0.88$ Etc	FRACTIONS

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Use common factors to simplify fractions; use common multiples to express fractions in the same denomination	The second sector	$\frac{4}{6} = \frac{?}{3}$ 3 is a factor of 6 so can find the missing numerator $\frac{2}{3}$	2 6 3 4 1 3 3 2 6 3 6 2 2 6 2 3 6 2 3 7	YEAR 6 FRACTIONS
Compare and order fractions, including >1	Fraction walls and fractions cubes (see previous years)	Bar models and rectangular models (see previous years)	Apply times tables knowledge linked to common factors. (see Year 5)	5 FRA
Add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions	Fraction walls and fractions cubes (see previous years)	Bar models and rectangular models (see previous years)	$2\frac{2}{5} + 1\frac{2}{3} =$ 1)Partition the whole numbers so $2 + 1 = 3$ 2) Convert both fractions so denominator is same $\frac{2}{5} = \frac{6}{15} \qquad \frac{2}{3} = \frac{10}{15}$ 3) Add fractions $\frac{6}{15} + \frac{10}{15} = \frac{16}{15} = 1\frac{1}{15}$ 4) Recombine whole number and fraction calculation $3 + 1\frac{1}{15} = 4\frac{1}{15}$	CTIONS

OBJECTIVE	CONCRETE	PICTORIAL	ABSTRACT	
Multiply simple pairs of proper fractions, writing the answer in its simplest from	Fraction strips $\frac{1}{3} \times \frac{1}{6}$ Think of x meaning 'lots of'	Rectangular model 1/3 x $1/2$ = $1/6This can be thought of as 1/3 of 1/2 or 1/2of 1/3.This is the term used in secondaryschool.$	Children will make generalisations to multiply the numerator and the denominator. $\frac{1}{3} \times \frac{1}{6} = \frac{1}{18}$	YEA
Divide fractions by a whole number	Fraction strips $\frac{1}{6} \div 2 = \frac{1}{12}$	Rectangular models $\frac{1}{2} \div 2 \qquad \frac{1}{4}$ $\frac{1}{4} \div 2 \qquad \frac{1}{8}$ $\frac{2}{5} \div 2 \qquad \frac{2}{10} \qquad \frac{2}{10}$	Children will make generalisations tomultiply the denominator by the whole number. $\frac{1}{6} \div 3 =$ $(3 \times 6 = 18)$ $\frac{1}{6} \div 3 = \frac{1}{18}$	YEAR 6 FRACTIONS
Associate a fraction with division and calculate the decimal equivalents	0.25 0.25 0.25 0.25 querters	3 slices of pie 'out of' 8	$\frac{3}{8}$ 3 'out of' 8 is the same as 3 'divided by' 8 $3 \div 8 = 0.375$ So $\frac{3}{8} = 0.375$	SN(
Recall and use the equivalences between simple FDP.	Fraction cubes (See previous years)	Fractions walls (See previous years)	Rapid recall of facts $\frac{1}{2} = 0.5 = 50\%$ $\frac{1}{4} = 0.25 = 25\%$ 1/10 = 0.1 = 10%	

GLOSSARY

Term	Meaning	Year Introduced
Denominator	The bottom number in a fraction. It shows how many equal parts that the whole has been divided into	
	E.G. $\frac{1}{4}$ - 4 is the denominator and the whole has 4 equal parts	
Equivalent fraction	These are fractions that may look different, but have the same value	Year 2
	E.G. $\frac{1}{4}$ and $\frac{2}{8}$ are equivalent	
Fraction	A part of a whole. A common fraction is made up of a numerator and a denominator	Year R
	A fantastic interactive fraction wall is perfect for iPads.	
	https://www.visnos.com/demos/fraction-wall	
Improper fraction	A fraction where the numerator is greater than the denominator. It has a value greater than	Year 5
	1	
	E.G. $\frac{5}{4}$	
Mixed number	A number that is made up of a whole number plus a fraction	Year 5
	E.G. $1\frac{1}{4}$	
Non-unit fraction	A fraction where the numerator is greater than 1	Year 2
Numerator	The top number of a fraction. It shows how many equal parts of the denominator are	Year 1
	represented	
	E.G. $\frac{3}{4}$ - 3 is the numerator	
Unit fraction	A fraction where the numerator is 1	Year 2
Vinculum	The horizontal line between the numerator and denominator; it shows the numbers are to be	Year 3
	interpreted together and represents a part/whole structure	

COMMON MISCONCEPTIONS WITHIN FRACTIONS

Misconception 1: Fractions are seen as pieces rather than equal parts to the whole.

Incorrect

Leaners view this as thirds

Correct

Learners write the shaded part $\frac{2}{3}$ "There are three equal parts to the whole and two are."

Misconception 2: Fractional pieces have to be congruent (the same shape) to be the same fraction.

Incorrect

Learners do not view this as quarters

Correct

Learners understand that triangles and rectangles both represent a quarter

Misconception 3: The larger the denominator the bigger the portion

```
Incorrect

"\frac{1}{3} is bigger than \frac{1}{2}

because 3 is bigger than 2"
```

Correct

" $\frac{1}{3}$ is smaller than $\frac{1}{2}$ because the whole is divided into three and that part will be smaller than a part whose whole is divided into two."

Misconception 4: Identical fraction of different 'wholes' are not the same.

"Would you prefer to eat half a cupcake or half the chocolate cake?" Why? Are you still getting half of each?

There is a fantastic interactive fraction wall which is perfect for iPads. <u>https://www.visnos.com/demos/fraction-wall</u>